JazzRoc versus “Chemtrails”

Contrail Facts and “Chemtrail” Fictions

Posts Tagged ‘conflicting


with 9 comments



Don’t forget my other pages, links and comments are one click away at the top right of the page…


(from Wikipedia)

Name, Symbol, Number: barium, Ba, 56
Chemical series: alkaline earth metals
Group, Period, Block: 2, 6, s
Appearance: silvery white


Standard atomic weight 137.327(7) ug·mol-1
Electron configuration [Xe] 6s2
Electrons per shell 2, 8, 18, 18, 8, 2


Physical properties

Phase: solid
Density 3.51 g/cm3
Liquid density at m.p.: 3.338 g/cm3
Melting point: 1000K (727°C, 1341°F)
Boiling point: 2170K (1897°C, 3447°F)
Heat of fusion: 7.12 kJ/mol-1
Heat of vaporization: 140.3 kJ/mol
Heat capacity: (25°C) 28.07 J/mol/K
Oxidation states: 2 (strongly basic oxide)
Magnetic ordering: paramagnetic
Electrical resistivity: (20°C) 332 nO/m
Thermal conductivity: (300K) 18.4 W/m/K
Thermal expansion (25°C) 20.6 µm/m/K
Mohs hardness: 1.25
CAS registry number: 7440-39-3


Barium is a chemical element, it has the symbol Ba, and atomic number 56. Barium is a soft silvery metallic alkaline earth metal and is never found in nature in its pure form due to its reactivity with air. Its oxide is historically known as baryta but it reacts with water and carbon dioxide and is not found as a mineral. The most common naturally occurring minerals are the very insoluble barium sulfate, BaSO4 (barite), and barium carbonate, BaCO3 (witherite). Benitoite is a rare gem containing barium.
It is a metallic element that is chemically similar to calcium but more reactive. This metal oxidizes very easily when exposed to air and is highly reactive with water or alcohol, producing hydrogen gas. Burning in air or oxygen produces not just barium oxide (BaO) but also the peroxide. Simple compounds of this heavy element are notable for their high specific gravity. This is true of the most common barium-bearing mineral, its sulfate barite BaSO4, also called ‘heavy spar’ due to the high density (4.5 g/cm³).
It has some medical and many industrial uses:
* Barium compounds, and especially barite (BaSO4), are extremely important to the petroleum industry. Barite is used in drilling mud, a weighting agent in drilling new oil wells.
* Barium sulfate is used as a radiocontrast agent for X-ray imaging of the digestive system (“barium meals” and “barium enemas”).
* Barium carbonate is a useful rat poison and can also be used in making bricks. Unlike the sulfate, the carbonate dissolves in stomach acid, allowing it to be poisonous.
* An alloy with nickel is used in spark plug wire.
* Barium oxide is used in a coating for the electrodes of fluorescent lamps, which facilitates the release of electrons.
* The metal is a “getter” in vacuum tubes, to remove the last traces of oxygen.
* Barium carbonate is used in glassmaking. Being a heavy element, barium increases the refractive index and luster of the glass.
* Barite is used extensively in rubber production.
* Barium nitrate and chlorate give green colors in fireworks.
* Impure barium sulfide phosphoresces after exposure to the light.
* Lithopone, a pigment that contains barium sulfate and zinc sulfide, is a permanent white that has good covering power, and does not darken in when exposed to sulfides.
* Barium peroxide can be used as a catalyst to start an aluminothermic reaction when welding rail tracks together. It can also be used in green tracer ammunition.
* Barium titanate was proposed in 2007[1] to be used in next generation battery technology for electric cars.
* Barium Fluoride is used in infrared applications.
* Barium is a key element in YBCO superconductors.



Barium (Greek barys, meaning “heavy”) was first identified in 1774 by Carl Scheele and extracted in 1808 by Sir Humphry Davy in England. The oxide was at first called barote, by Guyton de Morveau, which was changed by Antoine Lavoisier to baryta, from which “barium” was derived to describe the metal.



Because barium quickly becomes oxidized in air, it is difficult to obtain this metal in its pure form. It is primarily found in and extracted from the mineral barite which is crystallized barium sulfate. Barium is commercially produced through the electrolysis of molten barium chloride (BaCl2)


The most important compounds are barium peroxide, barium chloride, sulfate, carbonate, nitrate, and chlorate.

Naturally occurring barium is a mix of seven stable isotopes. There are twenty-two isotopes known, but most of these are highly radioactive and have half-lives in the several millisecond to several minute range. The only notable exceptions are 133Ba which has a half-life of 10.51 years, and 137Ba (2.55 minutes).


All water or acid soluble barium compounds are extremely poisonous. At low doses, barium acts as a muscle stimulant, while higher doses affect the nervous system, causing cardiac irregularities, tremors, weakness, anxiety, dyspnea and paralysis. This may be due to its ability to block potassium ion channels which are critical to the proper function of the nervous system.
Barium sulfate can be taken orally because it is highly insoluble in water, and is eliminated completely from the digestive tract. Unlike other heavy metals, barium does not bioaccumulate. However, inhaled dust containing barium compounds can accumulate in the lungs, causing a benign condition called baritosis.
Oxidation occurs very easily and, to remain pure, barium should be kept under a petroleum-based fluid (such as kerosene) or other suitable oxygen-free liquids that exclude air.
Barium acetate could lead to death in high doses. Marie Robards poisoned her father with the substance in Texas in 1993. She was tried and convicted in 1996.







Jet engines MAKE soda pop. Decane is the chemical name for aviation kerosine, or JP-8*. The combustion formula goes:
2*C10H22 + 31*O2 -> 20*CO2 + 11*H2O, or

And as MOST OF US know:


*JP-8 is modern aviation kerosine. It is safer, with a higher flashpoint that the JP-4 it has superseded. It has anti-corrosion and anti-gelling additives, but does NOT contain Ethylene Dibromide (which was once used to dissolve the lead oxide produced by tetra-ethyl lead anti-knock gasoline).

There could be THREE OR MORE transparent layers of air of DIFFERENT HUMIDITIES, only ONE of which condenses (at -40 deg) an ICE CRYSTAL TRAIL, within the short-haul civil aircraft band between 30 and 35 thousand feet. Layer thicknesses of differing humidity are frequently only hundreds of feet thick, and aircraft are spaced ten miles apart on the same level for a particular route, and conflicting routes are typically 2000ft above or below each other.

So you’ll see SOME planes laying ice crystal trails while others don’t – it depends which transparent stratospheric layer the plane is flying through. These layers themselves aren’t perfectly flat – they roughly conform to the ground profile AND any rising CUMULUS clouds. So even if the plane flies straight and level, it may be the layer it is in slopes gently down or up, and an ice crystal trail either appears or disappears. You have to remember these layers, though different, are ALWAYS themselves transparent.

So you can’t SEE them. You can only see which layer is really humid by a plane throwing a “vapor trail” in it. Typically stratospheric layers begin ABOVE the TROPOPAUSE, which is where our ground level weather STOPS. The layers vary in thickness, more densely packed close to the TROPOPAUSE, thinning out to nothing much above twelve miles up. It’s very smooth and calm up there (although it may have a high speed with respect to the ground).

Unlike what it is DOWN HERE. This rising panic ensues from an under-educated public. Had you all been properly taught about the weather as schoolchildren, this would be a NON-TOPIC.

Respiratory ailments may well be on the increase, but so is the planting of unusual crops which emit unusual pollens, auto fumes are still on the increase, and urban photochemical smogs are also on the increase. It is known (by some) that the COMBINATION of pollens, auto fumes, and urban smog can cause severe auto-immune failure, asthma, and death in the young, weak, or elderly.


If there are MORE “vapor trails” in the sky than there used to be, then the answer is that there is MORE AVIATION TRAFFIC and MORE WATER IN THE ATMOSPHERE. It isn’t very wise to look upwards and blame “soda pop” for combinatory effects which are happening down here, solely because you can’t understand how the atmosphere works. It certainly doesn’t help you to find a REAL solution to the REAL problem.

Video posts like this are WRONG, and risk scenarios as HARMFUL as a TSUNAMI.

Would YOU call a tsunami EVIL? No you wouldn’t, because a tsunami lacks INTENT.

Would I call this video post EVIL?